IMAGING
THE CORONA
AND SOLAR WIND
AS A SINGLE SYSTEM

C.E. DeForest, N. Viall, S.E. Gibson,
M. Beasley, R.C. Colaninno, R. Killough,
W. Kosmann, G. Laurent, D. McMullin,
and the PUNCH team

AGU Fall Meeting 2019
Solar physics studies the Sun and solar corona, primarily through remote sensing and spectral analysis.

Heliospheric physics studies the solar wind in interplanetary space, primarily through in-situ sampling.
WHAT IS THE PUNCH SMALL EXPLORER MISSION?

Scientific Driver: Understanding how the corona gives rise to the heliosphere and solar wind

Approach: direct, continuous, 3D imaging of the entire outer corona and inner heliosphere

Measurement: polarized images of Thomson-scattered light, every 4 minutes

Mission structure:
- four synchronous smallsats
- 570km sun-synch LEO
- two year duration; launch early 2023

Status: Phase B (preliminary design)
- PDR: Scheduled for Sep 2020
THE PUNCH FIELD OF VIEW: CONTINUOUS AND POLE-TO-POLE

PUNCH FOV

1.25° to 45° from the Sun, full annulus; **observing cadence**: 4 minutes

STEREO-A: 12/11/08 12:40:00 AM

PUNCH FOV: 6-180 R (1.5°-45°) Every 32 min.
PUNCH Rapid FOV: 6-80 R (1.5°-20°) Every 4 min.

Dark: Existing Blind Spots
PUNCH’s Science Objectives:

1. Understand how coronal structures become the ambient solar wind.
2. Understand the dynamic evolution of transient structures in the young solar wind.
Objective 1: Understand how coronal structures become the ambient solar wind.
HOW DOES THE SOLAR WIND FLOW?

• Outflow is visible everywhere because of small moving features.
• PUNCH exploits these features to map the flow of the young solar wind every six hours.
• Our best current data is from Ulysses ... once every six years ... at >1AU.
WHERE DOES THE SOLAR WIND BEGIN?

- Current instruments can just identify the top of the solar corona.
- Bright radial structures fade into "fluffy" dense clouds, ~10° from the Sun.
- PUNCH will image this transition with 30x more sensitivity.
Objective 2: Understand the dynamic evolution of transient structures in the young solar wind.
CME INTERIOR STRUCTURE

TRACKING CMES’ EVOLVING STRUCTURE IN 3D

- CMEs are quite complex
- Interior structure evolves as the CME propagates
- Fine-scale structure is visible down to the noise limit in HI-1.
- PUNCH has 10x-30x lower noise
HOW DOES PUNCH WORK?

3D IMAGING WITH POLARIZATION

Scattering physics polarizes light depending on angle.

Light carries an oscillating E-field... ...which shakes an electron...

...which re-radiates as a dipole antenna.

E-field is reduced by projection: \(\cos(\chi) \)

(Polarization: out of page)

Observer

Other angles can be determined from geometry

The ratio of polarized brightness in each feature determines scattering angle.

![Graph showing out-of-plane angle vs small feature pB/B ratio](image)

3D position is fully specified

- \(Y, Z \) from sky-plane projection
- \(X = r \cos \theta \)
HOW DOES PUNCH WORK?

3D IMAGING WITH POLARIZATION: AN EXAMPLE WITH STEREO/COR2

CME in unpolarized light

CME in “excess polarized” (pB) light

Polarization ratio
3D IMAGING WITH POLARIZATION: VALIDATED WITH STEREOSCOPY

SOHO view shows that the CME core and edges line up with the STEREO 3D determination. Reprojected 3D view shows the SOHO image plane. Original image from STEREO shows marked regions of interest.
HOW DOES PUNCH WORK?

TWO TYPES OF POLARIZING CAMERA COVER THE PUNCH FOV

1x NFI: Compact Coronagraph design
Naval Research Laboratory

3x WFI: Heliospheric Imager design
Southwest Research Institute
HOW DOES PUNCH WORK?

MERGING IMAGES TO CREATE A SINGLE LARGE FOV

- The WFI cameras fly in formation 120° apart in orbit.
- Each spacecraft rotates every 8 minutes to match its orbital motion.
- Exposures are combined on the ground.
- Each flash: complete polarization sequence
- Green circle: 4-min cadence coverage inside ~80 Rs
PUNCH WILL BRING 3D IMAGING TO THE OUTER CORONA AND YOUNG SOLAR WIND

SUMMING UP

- PUNCH will create and exploit low-noise images of the transition from corona to solar wind.
- Low-noise polarized imagery yields 3D structure in interplanetary space
- Primary novelty is not the instruments themselves
 - Novel mission design: single synchronized “virtual instrument”
 - Novel exploitation: integrated data products; 3D inversions
- PUNCH launches in 2023.
 - PUNCH has an open data policy.
 - Open science team meetings begin in 2021 – stay tuned!